These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of STIM1 at ERK/CDK sites is dispensable for cell migration and ER partitioning in mitosis. Author: Hammad AS, Yu F, Botheju WS, Elmi A, Alcantara-Adap E, Machaca K. Journal: Cell Calcium; 2021 Dec; 100():102496. PubMed ID: 34715400. Abstract: Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx pathway required for multiple physiological functions including cell motility. SOCE is triggered in response to depletion of intracellular Ca2+ stores following the activation of the endoplasmic reticulum (ER) Ca2+ sensor STIM1, which recruits the plasma membrane (PM) Ca2+ channel Orai1 at ER-PM junctions. STIM1 is phosphorylated dynamically, and this phosphorylation has been implicated in several processes including SOCE inactivation during M-phase, maximal SOCE activation, ER segregation during mitosis, and cell migration. Human STIM1 has 10 Ser/Thr residues in its cytosolic domain that match the ERK/CDK consensus phosphorylation. We recently generated a mouse knock-in line where wild-type STIM1 was replaced by a non-phosphorylatable STIM1 with all ten S/Ts mutated to Ala (STIM1-10A). Here, we generate mouse embryonic fibroblasts (MEF) from the STIM1-10A mouse line and a control MEF line (WT) that express wild-type STIM1 from a congenic mouse strain. These lines offer a unique model to address the role of STIM1 phosphorylation at endogenous expression levels in contrast to previous studies that relied mostly on overexpression. We show that STIM1 phosphorylation at ERK/CDK sites is not required for SOCE activation, cell migration, or ER partitioning during mitosis. These results rule out STIM1 phosphorylation as a regulator of SOCE, migration, and ER distribution in mitosis.[Abstract] [Full Text] [Related] [New Search]