These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancing the resilience of Zostera noltei seagrass meadows against Arenicola spp. bio-invasion: A decision-making approach.
    Author: Costa V, Flindt MR, Lopes M, Coelho JP, Costa AF, Lillebø AI, Sousa AI.
    Journal: J Environ Manage; 2022 Jan 15; 302(Pt A):113969. PubMed ID: 34715611.
    Abstract:
    Seagrass meadows provide important and valuable ecosystem services. They are affected by several natural and human-induced stressors, but a combination of natural recovery and management actions have recently inverted the worldwide reduction. The main objectives of this study were to provide science-based knowledge on ecology and restoration, framed on environmental-related policies. By coupling the general guidelines with practical experience, obtained from sequential in situ experiments carried out for several months in a show-case study area, this study provides guidelines useful for restoration practitioners. A decision-making approach is proposed to answer the following questions: 1) What is the best Zostera noltei transplanting method? 2) What is the best technique to reduce the bioturbation activity of Arenicola spp.?, 3) Do bioturbation reduction techniques affect the survival rate of Z. noltei transplants?, and finally, 4) What are the key steps to maximize the success of a Z. noltei transplant and increase the species' resilience? Having a Portuguese coastal lagoon as show-case (Mira Channel, Ria de Aveiro), different transplant and restoration methodologies were tested (i.e. metal frames, nails, bamboo sticks, shoots inserted unanchored into the sediment, and intact units of sediment with seagrasses, named as SODs) to assure low environmental impact on donor meadows, high survival rate of transplanted shoots and the recovery of fragmented or lost meadows. Moreover, to potentially reverse a degraded Arenicola spp. colonized seagrass habitat, different types of natural membranes were tested. Results showed that the best transplanting method is the use of SODs as the self-facilitation process of Z. noltei is enhanced, while being the least invasive for the donor population. The use of a natural membrane can significantly decrease the bioturbation stress caused by Arenicola spp., with jute membrane being the best option, given its cost-handling-benefit trade-offs. Enhancing the success of seagrass restoration requires the implementation of effective measures by environmental restoration practitioners. We defined a three-step process to improve the resilience of Z. noltei. This stepwise approach consists on 1) Characterization of the donor population, 2) Identification of the constraints and implementation of measures to prevent them, and 3) Scale-up the restoration plan. The application of this stepwise approach in intertidal coastal and estuarine systems management will, therefore, facilitate the success of Z. noltei restoration plans.
    [Abstract] [Full Text] [Related] [New Search]