These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vitamin D Status in Children With Short Stature: Accurate Determination of Serum Vitamin D Components Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Author: Xu B, Feng Y, Gan L, Zhang Y, Jiang W, Feng J, Yu L. Journal: Front Endocrinol (Lausanne); 2021; 12():707283. PubMed ID: 34721288. Abstract: OBJECTIVE: Vitamin D is critical for calcium and bone metabolism. Vitamin D insufficiency impairs skeletal mineralization and bone growth rate during childhood, thus affecting height and health. Vitamin D status in children with short stature is sparsely reported. The purpose of the current study was to investigate various vitamin D components by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to better explore vitamin D storage of short-stature children in vivo. METHODS: Serum circulating levels of 25-hydroxyvitamin D2 [25(OH)D2], 25-hydroxyvitamin D3 [25(OH)D3], and 3-epi-25-hydroxyvitamin D3 [3-epi-25(OH)D3, C3-epi] were accurately computed using the LC-MS/MS method. Total 25(OH)D [t-25(OH)D] and ratios of 25(OH)D2/25(OH)D3 and C3-epi/25(OH)D3 were then respectively calculated. Free 25(OH)D [f-25(OH)D] was also measured. RESULTS: 25(OH)D3 and f-25(OH)D levels in short-stature subgroups 2 (school age: 7~12 years old) and 3 (adolescence: 13~18 years old) were significantly lower compared with those of healthy controls. By contrast, C3-epi levels and C3-epi/25(OH)D3 ratios in all the three short-stature subgroups were markedly higher than the corresponding healthy cases. Based on cutoff values developed by Endocrine Society Recommendation (but not suitable for methods 2 and 3), sufficient storage capacities of vitamin D in short-stature subgroups 1, 2, and 3 were 42.8%, 23.8%, and 9.0% as determined by Method 3 [25(OH)D2/3+25(OH)D3], which were lower than those of 57.1%, 28.6%, and 18.2% as determined by Method 1 [25(OH)D2+25(OH)D3+C3-epi] and 45.7%, 28.5%, and 13.6% as determined by Method 2 [25(OH)D2/3+25(OH)D3+C3-epi]. Levels of 25(OH)D2 were found to be weakly negatively correlated with those of 25(OH)D3, and higher 25(OH)D3 levels were positively correlated with higher levels of C3-epi in both short-stature and healthy control cohorts. Furthermore, f-25(OH)D levels were positively associated with 25(OH)D3 and C3-epi levels in children. CONCLUSIONS: The current LC-MS/MS technique can not only separate 25(OH)D2 from 25(OH)D3 but also distinguish C3-epi from 25(OH)D3. Measurement of t-25(OH)D [25(OH)D2+25(OH)D3] alone may overestimate vitamin D storage in children, and short-stature children had lower vitamin D levels compared with healthy subjects. Ratios of C3-epi/25(OH)D3 and 25(OH)D2/25(OH)D3 might be alternative markers for vitamin D catabolism/storage in short-stature children. Further studies are needed to explore the relationships and physiological roles of various vitamin D metabolites.[Abstract] [Full Text] [Related] [New Search]