These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Accuracy of high-frequency oscillations recorded intraoperatively for classification of epileptogenic regions.
    Author: Weiss SA, Staba RJ, Sharan A, Wu C, Rubinstein D, Das S, Waldman Z, Orosz I, Worrell G, Engel J, Sperling MR.
    Journal: Sci Rep; 2021 Nov 01; 11(1):21388. PubMed ID: 34725412.
    Abstract:
    To see whether acute intraoperative recordings using stereo EEG (SEEG) electrodes can replace prolonged interictal intracranial EEG (iEEG) recording, making the process more efficient and safer, 10 min of iEEG were recorded following electrode implantation in 16 anesthetized patients, and 1-2 days later during non-rapid eye movement (REM) sleep. Ripples on oscillations (RonO, 80-250 Hz), ripples on spikes (RonS), sharp-spikes, fast RonO (fRonO, 250-600 Hz), and fast RonS (fRonS) were semi-automatically detected. HFO power and frequency were compared between the conditions using a generalized linear mixed-effects model. HFO rates were compared using a two-way repeated measures ANOVA with anesthesia type and SOZ as factors. A receiver-operating characteristic (ROC) curve analysis quantified seizure onset zone (SOZ) classification accuracy, and the scalar product was used to assess spatial reliability. Resection of contacts with the highest rate of events was compared with outcome. During sleep, all HFOs, except fRonO, were larger in amplitude compared to intraoperatively (p < 0.01). HFO frequency was also affected (p < 0.01). Anesthesia selection affected HFO and sharp-spike rates. In both conditions combined, sharp-spikes and all HFO subtypes were increased in the SOZ (p < 0.01). However, the increases were larger during the sleep recordings (p < 0.05). The area under the ROC curves for SOZ classification were significantly smaller for intraoperative sharp-spikes, fRonO, and fRonS rates (p < 0.05). HFOs and spikes were only significantly spatially reliable for a subset of the patients (p < 0.05). A failure to resect fRonO areas in the sleep recordings trended the most sensitive and accurate for predicting failure. In summary, HFO morphology is altered by anesthesia. Intraoperative SEEG recordings exhibit increased rates of HFOs in the SOZ, but their spatial distribution can differ from sleep recordings. Recording these biomarkers during non-REM sleep offers a more accurate delineation of the SOZ and possibly the epileptogenic zone.
    [Abstract] [Full Text] [Related] [New Search]