These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of Coformer Selection on In Vitro and In Vivo Performance of Adefovir Dipivoxil Cocrystals. Author: Li L, Pang Z, Ma K, Gao Y, Zheng D, Wei Y, Zhang J, Qian S. Journal: Pharm Res; 2021 Oct; 38(10):1777-1791. PubMed ID: 34729701. Abstract: PURPOSE: This study aimed to improve the in vitro dissolution, permeability and oral bioavailability of adefovir dipivoxil (ADD) by cocrystal technology and clarify the important role of coformer selection on the cocrystal's properties. METHODS: ADD was cocrystallized with three small molecules (i.e., paracetamol (PA), saccharin (SAC) and nicotinamide (NIC)), respectively. The obtained ADD-PA cocrystal was characterized by DSC, TGA, PXRD and FTIR. Comparative study on dissolution rates among the three ADD cocrystals were conducted in water and pH 6.8 phosphate buffer. Besides, effects of coformers on intestinal permeability of ADD were evaluated via in vitro Caco-2 cell model and in situ single-pass intestinal perfusion model in rats. Furthermore, in vivo pharmacokinetic study of ADD cocrystals was also compared. RESULTS: Dissolution rates of ADD cocrystals were improved with the order of ADD-SAC cocrystal > ADD-PA cocrystal > ADD-NIC cocrystal. The permeability studies on Caco-2 cell model and single-pass intestinal perfusion model indicated that PA could enhance intestinal absorption of ADD by P-gp inhibition, while SAC and NIC did not. Further in vivo pharmacokinetic study showed that ADD-SAC cocrystal exhibited higher Cmax (1.4-fold) and AUC0-t (1.3-fold) of ADD than administration of ADD alone, and Cmax and AUC0-t of ADD-PA cocrystal were significantly enhanced by 2.1-fold and 2.2-fold, respectively, which was attributed to its higher dissolution and improved intestinal permeability. CONCLUSION: Coformer selection had an important role on cocrystal's properties, and cocrystallization of ADD with a suitable coformer was an effective approach to enhance both dissolution and bioavailability of ADD.[Abstract] [Full Text] [Related] [New Search]