These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular Signal-Regulated Kinase1 (ERK1)-Mediated Phosphorylation of Voltage-Dependent Anion Channel (VDAC) Suppresses its Conductance. Author: Malik C, Siddiqui SI, Ghosh S. Journal: J Membr Biol; 2022 Feb; 255(1):107-116. PubMed ID: 34731249. Abstract: ERK1 is one of the members of the mitogen-activated protein kinases that regulate important cellular functions. VDAC is located at the outer membrane of mitochondria. Here, an interaction between VDAC and ERK1 has been studied on an artificial planar lipid bilayer using in vitro electrophysiology experiments. We report that VDAC is phosphorylated by ERK1 in the presence of Mg2+-ATP and its single-channel currents are inhibited on the artificial bilayer membrane. Treatment of Alkaline phosphatase on ERK1 phosphorylated VDAC leads to partial recovery of the single-channel VDAC currents. Later, phosphorylation of VDAC was demonstrated by Pro-Q diamond dye. Mass Spectrometric studies indicate phosphorylation of VDAC at Threonine 33, Threonine 55, and Serine 35. In a nutshell, phosphorylation of VDAC leads to the closure of the channel.[Abstract] [Full Text] [Related] [New Search]