These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Manual QT interval measurement with a smartphone-operated single-lead ECG versus 12-lead ECG: a within-patient diagnostic validation study in primary care. Author: Beers L, van Adrichem LP, Himmelreich JCL, Karregat EPM, de Jong JSSG, Postema PG, de Groot JR, Lucassen WAM, Harskamp RE. Journal: BMJ Open; 2021 Nov 03; 11(11):e055072. PubMed ID: 34732504. Abstract: OBJECTIVE: To determine the accuracy of QT measurement in a smartphone-operated, single-lead ECG (1L-ECG) device (AliveCor KardiaMobile 1L). DESIGN: Cross-sectional, within-patient diagnostic validation study. SETTING/PARTICIPANTS: Patients underwent a 12-lead ECG (12L-ECG) for any non-acute indication in primary care, April 2017-July 2018. INTERVENTION: Simultaneous recording of 1L-ECGs and 12L-ECGs with blinded manual QT assessment. OUTCOMES OF INTEREST: (1) Difference in QT interval in milliseconds (ms) between the devices; (2) measurement agreement between the devices (excellent agreement <20 ms and clinically acceptable agreement <40 ms absolute difference); (3) sensitivity and specificity for detection of extreme QTc (short (≤340 ms) or long (≥480 ms)), on 1L-ECGs versus 12L-ECGs as reference standard. In case of significant discrepancy between lead I/II of 12L-ECGs and 1L-ECGs, we developed a correction tool by adding the difference between QT measurements of 12L-ECG and 1L-ECGs. RESULTS: 250 ECGs of 125 patients were included. The mean QTc interval, using Bazett's formula (QTcB), was 393±25 ms (mean±SD) in 1L-ECGs and 392±27 ms in lead I of 12L-ECGs, a mean difference of 1±21 ms, which was not statistically different (paired t-test (p=0.51) and Bland Altman method (p=0.23)). In terms of agreement between 1L-ECGs and lead I, QTcB had excellent agreement in 66.9% and clinically acceptable agreement in 93.4% of observations. The sensitivity and specificity of detecting extreme QTc were 0% and 99.2%, respectively. The comparison of 1L-ECG QTcB with lead II of 12L-ECGs showed a significant difference (p=<0.01), but when using a correction factor (+9 ms) this difference was cancelled (paired t-test (p=0.43) or Bland Altman test (p=0.57)). Moreover, it led to improved rates of excellent (71.3%) and clinically acceptable (94.3%) agreement. CONCLUSION: Smartphone-operated 1L-ECGs can be used to accurately measure the QTc interval compared with simultaneously obtained 12L-ECGs in a primary care population. This may provide an opportunity for monitoring the effects of potential QTc-prolonging medications.[Abstract] [Full Text] [Related] [New Search]