These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The reciprocal effects of epsilon-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase.
    Author: Urano T, Chibber BA, Castellino FJ.
    Journal: Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4031-4. PubMed ID: 3473492.
    Abstract:
    The activation of human [Glu1]plasminogen [( Glu1]Pg) by high-molecular-weight two-chain human urinary urokinase [EC 3.4.21.31) and low-molecular-weight two-chain human urinary urokinase is inhibited by Cl- at physiological concentrations and stimulated by epsilon-aminohexanoic acid (epsilon Ahx; epsilon-aminocaproic acid). The inhibition by Cl- does not occur in the presence of concentrations of epsilon Ahx that saturate the acid's weak binding sites on [Glu1]Pg, and the stimulation by epsilon Ahx is maximally exhibited in the presence of Cl-. We have used intrinsic fluorescence measurements with [Glu1]Pg to show that the conformational alteration and the concomitant increase in activation rate that accompanies epsilon Ahx-binding to [Glu1]Pg in the presence of Cl- does not occur in the same manner without Cl-. Further, the decrease in the intrinsic fluorescence that is attendant to Cl- binding to [Glu1]Pg in the absence of epsilon Ahx is not observed in the presence of this effector molecule. Analyses of the results of this manuscript strongly indicate that a conformation of [Glu1]Pg that is not optimal for its activation by urokinase is adopted in the presence of Cl-, and this is relieved by epsilon Ahx. This has important implications in the inhibition of [Glu1]Pg activation in the solution phase of blood plasma and in the large acceleration of this process when plasminogen is bound to physiological positive effectors via its epsilon Ahx-binding site(s).
    [Abstract] [Full Text] [Related] [New Search]