These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adjusting the accuracy of PEGDA-GelMA vascular network by dark pigments via digital light processing printing. Author: Sheng L, Li M, Zheng S, Qi J. Journal: J Biomater Appl; 2022 Feb; 36(7):1173-1187. PubMed ID: 34738507. Abstract: Vascularization is one of the most important factors greatly influencing scaffold regeneration. In this study, a precise network of hollow vessels was printed by digital light processing (DLP) with poly(ethylene glycol) diacrylate (PEGDA)/gelatin-methacryloyl (GelMA), and dark pigmentation absorbers were added to ensure printing accuracy. First, the compound bio-inks of the PEGDA-GelMA hydrogel were prepared for direct vascular printing, and a high-precision DLP system was established. Second, the printing effects of three dark absorbers, namely, nigrosin, brilliant black, and brilliant blue, on the x-, y-, and z-axes were studied. By printing models with different densities, it was determined that 0.2% nigrosin, 0.1% brilliant black, and 0.3% brilliant blue had better effects on the x- and y-axes accuracy, and the absorbance of the absorbers played a decisive role in adjusting the accuracy. Additionally, to solve the problem of uneven curing on the upper and lower surfaces caused by the addition of an absorber with high absorbance, a model of the difference in curing width between the upper and lower surfaces of a unit-layer slice based on high-absorbance absorbers was established, and the reference value for the slice thickness was calculated. Third, the biological and mechanical properties of the bio-inks were verified with scanning electron microscopy and Fourier transform infrared, and by tensile, swelling, degradation, and cytotoxicity tests on different concentrations of PEGDA-GelMA hydrogel and absorbers. The results showed that 30% PEGDA-7% GelMA/0.1% brilliant black was the optimal preparation to print a hollow vascular network. The error of the printing tube wall and cavity was between 1% and 3%, which demonstrates the high precision of the method. Human umbilical vein endothelial cells were planted in the lumen, and the survival rate achieved 107% on the seventh day, demonstrating the good biocompatibility of the composite hydrogel.[Abstract] [Full Text] [Related] [New Search]