These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. Author: Nakazawa M, Takahashi M, Hayashi R, Matsubara Y, Kashiyama Y, Ueda M, Inui H, Sakamoto T. Journal: FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635. Abstract: Euglena gracilis produces ATP in the anaerobic mitochondria with concomitant wax ester formation, and NADH is essential for ATP formation and fatty acid synthesis in the mitochondria. This study demonstrated that mitochondrial cofactor conversion by nicotinamide nucleotide transhydrogenase (NNT), converting NADPH/NAD+ to NADP+ /NADH, is indispensable for sustaining anaerobic metabolism. Silencing of NNT genes significantly decreased wax ester production and cellular viability during anaerobiosis but had no such marked effects under aerobic conditions. An analogous phenotype was observed in the silencing of the gene encoding a mitochondrial NADP+ -dependent malic enzyme. These results suggest that the reducing equivalents produced in glycolysis are shuttled to the mitochondria as malate, where cytosolic NAD+ regeneration is coupled with mitochondrial NADPH generation.[Abstract] [Full Text] [Related] [New Search]