These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. Author: Wang Y, Sun R, Xu X, Du M, Zhu B, Wu C. Journal: Int J Biol Macromol; 2021 Dec 15; 193(Pt B):1471-1480. PubMed ID: 34742837. Abstract: Curcumin has a wide range of pharmacological activities, but its poor water solubility, chemical instability, and low bioavailability extensively limit the further application in food and pharmaceutical systems. In this study, the potential of using soy protein (SP) to interact with, encapsulate and protect hydrophobic curcumin (Cur) by pH-shift method was evaluated. Results indicated that SP structure experienced a typical pathway from unfolding to refolding during the pH-shifting process (pH 7-12-7), which clearly expressed the encapsulation process of Cur by pH-shift method into SP. Then the physicochemical and morphological properties of soy protein-encapsulated curcumin nanoparticles (SP-Cur) were investigated. Fluorescence measurements and Isothermal Titration Calorimetry showed that the combination of Cur and SP was a spontaneous reaction with a decrease in Gibbs free energy, which was mainly driven by hydrophobic interaction. Fourier Transform Infra-Red and Ultraviolet Spectroscopy further showed that the Cur had successfully embedded into SP. SP-Cur had a spherical shape-like structure and relatively small size (d < 100 nm). The encapsulation efficiency of Cur showed a concentration-dependent manner, which could be as high as 97.43%. In addition, the SP-Cur exhibited enhanced thermal stability and photostability.[Abstract] [Full Text] [Related] [New Search]