These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incorporating human exposure information in a weight of evidence approach to inform design of repeated dose animal studies.
    Author: Lowe K, Dawson J, Phillips K, Minucci J, Wambaugh JF, Qian H, Ramanarayanan T, Egeghy P, Ingle B, Brunner R, Mendez E, Embry M, Tan YM.
    Journal: Regul Toxicol Pharmacol; 2021 Dec; 127():105073. PubMed ID: 34743952.
    Abstract:
    Human health risks from chronic exposures to environmental chemicals are typically estimated from potential human exposure estimates and dose-response data obtained from repeated-dose animal toxicity studies. Various criteria are available for selecting the top (highest) dose used in these animal studies. For example, toxicokinetic (TK) and toxicological data provided by shorter-term or dose range finding studies can be evaluated in a weight of evidence approach to provide insight into the dose range that would provide dose-response data that are relevant to human exposures. However, there are concerns that a top dose resulting from the consideration of TK data may be too low compared to other criteria, such as the limit dose or the maximum tolerated dose. In this paper, we address several concerns related to human exposures by discussing 1) the resources and methods available to predict human exposure levels and the associated uncertainty and variability, and 2) the margin between predicted human exposure levels and the dose levels used in repeated-dose animal studies. A series of case studies, ranging from data-rich to data-poor chemicals, are presented to demonstrate that expected human exposures to environmental chemicals are typically orders of magnitude lower than no-observed-adverse-effect levels/lowest-observed-adverse-effect levels (NOAELs/LOAELs) when available (used as conservative surrogates for top doses). The results of these case studies support that a top dose based, in part, on TK data is typically orders of magnitude higher than expected human exposure levels.
    [Abstract] [Full Text] [Related] [New Search]