These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mice Uterine Stem Cells are Affected by Neonatal Endocrine Disruption & Initiate Uteropathies in Adult Life Independent of Circulatory Ovarian Hormones.
    Author: Singh P, Metkari SM, Bhartiya D.
    Journal: Stem Cell Rev Rep; 2022 Jun; 18(5):1686-1701. PubMed ID: 34750780.
    Abstract:
    It is generally believed that ovarian hormones regulate uterine functions and their altered levels result in various uteropathies like non-receptive uterus, endometrial hyperplasia, adenomyosis, endometriosis, leiomyomas and cancer. Uterus harbors two populations of stem cells including pluripotent, very small embryonic-like stem cells (VSELs) and tissue-specific progenitors (endometrial stem cells, EnSCs). Unlike endometrial mesenchymal stem/ stromal cells, VSELs/EnSCs express ERα, ERβ and PR which makes them directly vulnerable to perinatal endocrine insults. Present study was undertaken to evaluate whether uteropathies occur due to altered hormones and/or intrinsic changes in stem/progenitor cells. Mice pups, exposed to estradiol (20 µg/pup/day) on postnatal days 3-7 or vehicle, were subjected to bilateral ovariectomy on day 30 and later exposed sequentially to estradiol and progesterone resulting in receptive uterus in control mice. Despite similar hormonal exposure, endocrine disruption resulted in non-receptive uterus with noticeable endometrial and myometrial hyperplasia and up-regulation of stem cell markers (Oct-4A, Oct-4, Sox2, Nanog). Glands were poorly formed and 'defective' epithelial progenitors were found disseminated into myometrium and blood vessels revealing how adenomyosis and endometriosis possibly initiate. Progesterone resistance and estradiol dominance due to downregulation of Erα & Pr and upregulation of Erβ transcripts was observed in both intact uterus and stem cells enriched from uterus. Transcripts specific for DNA mismatch repair axis (Pcna, NP95 and Dnmt1), repair enzymes (Brca-1, Rad51 and Mlh1) were dysregulated whereas Ki67 was ten-folds increased suggestive of genomic instability. Study reveals role of stem cells in initiating uteropathies during adult life independent of circulatory ovarian hormones. Endocrine disruption affects tissue resident stem/progenitor cells (VSELs/EnSCs) in both endometrium and myometrium, result in epithelial cells hyperplasia, non-receptive endometrium, adenomyosis and defective stem cells and epithelial progenitors were detected in the perimetrium from where they can mobilize to ectopic sites to initiate endometriosis. Study shows stem cell basis for various uteropathies. VSEL: Very small embryonic like stem cell; EnSC: Endometrial stem cell; E + P: Estradiol + Progesterone; E: Endometrium; P: Perimetrium; M: Myometrium; ACD: Asymmetrical cell division; SCD: Symmetrical cell division; CE: Clonal expansion; G: Gland; S: Stromal cell; US: Undifferentiated stromal cell; LE: Luminal epithelium; GE: Glandular epithelium; EP: Epithelial progenitors; SMC: Spindle-shaped myometrial cell; OMC: Oval-shaped myometrial cell.
    [Abstract] [Full Text] [Related] [New Search]