These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quasi-isotropically thermoconductive, antiwear and insulating hierarchically assembled hexagonal boron nitride nanosheet/epoxy composites for efficient microelectronic cooling.
    Author: An L, Zhang N, Zeng X, Zhong B, Yu Y.
    Journal: J Colloid Interface Sci; 2022 Feb 15; 608(Pt 2):1907-1918. PubMed ID: 34758420.
    Abstract:
    Herein, Pebax functionalized h-BNNSs (P-BNNSs) fabricated by a mechanical exfoliation and in-situ modification process are employed to improve the thermal conductivity and antiwear performance of epoxy resin (EP). Pebax can effectively improve the dispersibility of P-BNNSs, achieving hierarchical assembly of P-BNNSs in EP matrix during EP curing process to form a multinetwork structure only at a low P-BNNS filling contents (≤6 wt%). This multinetwork structure can act as excellent heat conductive pathways to realize simultaneously vertical and horizontal heat diffusion, obtaining quasi-isotropical thermal conductive P-BNNS/EP composites. Fascinatingly, a through-plane thermal conductivity of 3.9 W/(m·K) and an in-plane thermal conductivity of 2.9 W/(m·K) are obtained. More importantly, this special structure can simultaneously improve the antiwear, mechanical and electrically insulating performances of pure EP. The friction coefficients and wear rates of P-BNNS/EP composites (P-BNNS contents ≤ 6 wt%) are dramatically decreased to less than 0.2 and 1 × 10-5 mm3/(N·m), comparing with those of pure EP which are over 0.6 and 2 × 10-5 mm3/(N·m), respectively. The enhanced tensile stress of over 110 MPa and electric volume resistivity of over 1.50 × 1013 Ω·cm are also observed for P-BNNS/EP composite films. These improved properties make the P-BNNS/EP composites very promising as packaging or heat dissipation materials in the high density integration systems and high frequency printed circuit boards.
    [Abstract] [Full Text] [Related] [New Search]