These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combing phosphorus-modified hydrochar and zeolite prepared from coal gangue for highly effective immobilization of heavy metals in coal-mining contaminated soil.
    Author: Ge Q, Tian Q, Hou R, Wang S.
    Journal: Chemosphere; 2022 Mar; 291(Pt 2):132835. PubMed ID: 34762885.
    Abstract:
    Considering the adverse effects of heavy metals (HMs) on agriculture soil, in-situ immobilization has been paid great attention worldwide. P-modified biochar/hydrochar along with synthetic zeolite for efficient HMs immobilization in contaminated soil becomes a promising choice. In this study, H3PO4-modified hydrochar (BPH) derived from banana peels, and Na-X zeolite (ZL) prepared from coal gangue was applied individually and synergistically (1%BPH, 2%BPH 1%ZL, 2%ZL, and 1%BPH+1%ZL) to remediate a farmland soil polluted by Cd, Cu, and Pb near the coal-mining area. Compared with the mono-application of these two amendments, their combination significantly improved the soil organic carbon (SOC), electric conductivity (EC), and dehydrogenase activity. Besides, the addition of 1%CLH+1%ZL remarkably reduced the Cd, Cu, and Pb bioavailability by 67.01%, 57.01%, and 78.72%, respectively, in the soil after 100 d incubation by transforming these metals to more stable forms. The order of the HMs immobilization capacity for these two amendments was as follows: Pb > Cu > Cd. Moreover, the dominated immobilization mechanism of their synergistic application was that BPH could immobilize HMs by precipitation, complexation, and π-π electron-donor-acceptor interaction. The precipitation and complexation blocked the surface pores of BPH. The sustained release of phosphorus groups and radicals was prevented. This obstacle was possibly alleviated by adding ZL. Besides, the formation of cationic bridging, the enhancement of soil properties, and the physical adsorption of these amendments were also conducive to HMs immobilization in soil. This work indicated that co-application of BPH and ZL possibly was an excellent choice for immobilizing HMs in soil.
    [Abstract] [Full Text] [Related] [New Search]