These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of 3D Printed Smartphone-Based Multi-Purpose Fundus Camera (MultiScope) for Retinopathy of Prematurity.
    Author: Pugalendhi A, Ranganathan R.
    Journal: Ann Biomed Eng; 2021 Dec; 49(12):3323-3338. PubMed ID: 34773157.
    Abstract:
    Retinopathy of Prematurity (ROP) is a prominent source of low vision and blindness in preterm babies. Wide-Field Digital Retinal Imaging (WFDRI) systems acquire accurate digital images which are very useful for identification, documentation and transmitting the various retinal diseases. This telemedicine technique has potential for an alternative tool for Binocular Indirect Ophthalmoscopy (BIO) in ROP screening, but it is very expensive and accessibility for poor communities is limited. Capabilities of good illumination, high resolution camera and processing speed of the modern smartphones are being identified as a substitute. Potential applications of 3D printing is that it provides a severe impact in medical field, especially in ophthalmology sector. Competences of 3D printing are very useful for the development of retinal camera from any smartphone with the help of 3D printable devices. The primary aim of this study is to develop a handheld 3D printed smartphone-based multi-purpose fundus camera for ROP screening. The secondary aim is to check the feasibility and compare the digital fundus images obtained from the developed fundus camera against the commercial RetCam imaging. The proposed cost effective and remote reading device is an alternative to WFDRI for ROP screening and can improve the potential of ROP care for low resource communities.
    [Abstract] [Full Text] [Related] [New Search]