These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DA-9805 protects dopaminergic neurons from endoplasmic reticulum stress and inflammation. Author: Kang S, Piao Y, Kang YC, Lim S, Pak YK. Journal: Biomed Pharmacother; 2022 Jan; 145():112389. PubMed ID: 34775235. Abstract: Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 μg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1β, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.[Abstract] [Full Text] [Related] [New Search]