These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Surface anchoring as a control parameter for shaping skyrmion or toron properties in thin layers of chiral nematic liquid crystals and noncentrosymmetric magnets. Author: Leonov AO. Journal: Phys Rev E; 2021 Oct; 104(4-1):044701. PubMed ID: 34781482. Abstract: Existence of topological localized states (skyrmions and torons) and the mechanism of their condensation into modulated states are the ruling principles of condensed matter systems, such as chiral nematic liquid crystals (CLCs) and chiral magnets (ChM). In bulk helimagnets, skyrmions are rendered into thermodynamically stable hexagonal skyrmion lattice due to the combined effect of a magnetic field and, e.g., small anisotropic contributions. In thin glass cells of CLCs, skyrmions are formed in response to the geometrical frustration and field coupling effects. By numerical modeling, I undertake a systematic study of skyrmion or toron properties in thin layers of CLCs and ChMs with competing surface-induced and bulk anisotropies. The conical phase with a variable polar angle serves as a suitable background, which shapes skyrmion internal structure, guides the nucleation processes, and substantializes the skyrmion-skyrmion interaction. I show that the hexagonal lattice of torons can be stabilized in a vast region of the constructed phase diagram for both easy-axis bulk and surface anisotropies. A topologically trivial droplet is shown to form as a domain boundary between two cone states with different rotational fashion, which underpins its stability. The findings provide a recipe for controllably creating skyrmions and torons, possessing the features on demand for potential applications.[Abstract] [Full Text] [Related] [New Search]