These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Author: Wang W, Mohseni P, Kilgore KL, Najafizadeh L.
    Journal: IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289.
    Abstract:
    This paper presents a new solution that enables the use of transfer learning for cuff-less blood pressure (BP) monitoring via short duration of photoplethysmogram (PPG). The proposed method estimates BP with low computational budget by 1) creating images from segments of PPG via visibility graph (VG), hence, preserving the temporal information of the PPG waveform, 2) using pre-trained deep convolutional neural network (CNN) to extract feature vectors from VG images, and 3) solving for the weights and bias between the feature vectors and the reference BPs with ridge regression. Using the University of California Irvine (UCI) database consisting of 348 records, the proposed method achieves a best error performance of 0.00±8.46 mmHg for systolic blood pressure (SBP), and -0.04±5.36 mmHg for diastolic blood pressure (DBP), respectively, in terms of the mean error (ME) and the standard deviation (SD) of error, ranking grade B for SBP and grade A for DBP under the British Hypertension Society (BHS) protocol. Our novel data-driven method offers a computationally-efficient end-to-end solution for rapid and user-friendly cuff-less PPG-based BP estimation.
    [Abstract] [Full Text] [Related] [New Search]