These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prevalence and antimicrobial susceptibility of extended-spectrum beta lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated in selected hospitals of Anyigba, Nigeria.
    Author: Mofolorunsho KC, Ocheni HO, Aminu RF, Omatola CA, Olowonibi OO.
    Journal: Afr Health Sci; 2021 Jun; 21(2):505-512. PubMed ID: 34795702.
    Abstract:
    BACKGROUND: Escherichia coli and Klebsiella pneumoniae are commonly implicated in urinary tract infections accounting for majority of the antimicrobial resistance encountered in hospitals. OBJECTIVES: To determine the prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamases (ESBLs) producing E. coli and K. pneumoniae among patients in Anyigba, Nigeria. METHODS: This hospital-based cross-sectional study was conducted using urine samples from 200 patients of Grimmard Catholic hospital and Maria Goretti hospital. Urine samples were processed to identify ESBL-producing E. coli and K. pneumoniae using standard microbiological techniques. Isolates were then tested against antimicrobial agents. RESULTS: A total of 156 bacterial isolates were recovered consisting 128 of E. coli and 28 of K. pneumoniae. Extended spectrum beta-lactamases production was observed in 69% of E. coli and 31% of K. pneumoniae. These pathogens were resistant to 3 or more antibiotics. Of the antimicrobials tested, cefotaxime demonstrated the highest rates of resistance (100%) for both ESBL-producing E. coli and K. pneumoniae. Fifty-four isolates of ESBL-producing E. coli showed a high level of resistance to amoxicillin clavulanic acid (83.3%), ciprofloxacin (83.3%), and ceftazidime (79.6%). ESBL-positive K. pneumoniae isolates were highly resistant to ciprofloxacin (75%), and amoxicillin clavulanic acid (83.3%). Cefoxitin (62.5%) and gentamicin (66.7%) showed substantially higher rates of resistance against these isolates while all 24 strains were resistant to imipenem. CONCLUSION: This study indicated the prevalence of ESBL-positive Gram-negative pathogens in these study sites and also demonstrated their resistance to a few antibiotics. This highlights the need for new antimicrobials that are potent and improved policy on use of antibiotics.
    [Abstract] [Full Text] [Related] [New Search]