These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tumor necrosis factor-α modulates GABAergic and dopaminergic neurons in the ventrolateral periaqueductal gray of female mice. Author: Pati D, Kash TL. Journal: J Neurophysiol; 2021 Dec 01; 126(6):2119-2129. PubMed ID: 34817244. Abstract: Neuroimmune signaling is increasingly identified as a critical component of various illnesses, including chronic pain, substance use disorder, and depression. However, the underlying neural mechanisms remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), may play a role by modulating synaptic function and long-term plasticity. The midbrain structure periaqueductal gray (PAG) plays a well-established role in pain processing, and although TNF-α inhibitors have emerged as a therapeutic strategy for pain-related disorders, the impact of TNF-α on PAG neuronal activity has not been thoroughly characterized. Recent studies have identified subpopulations of ventrolateral PAG (vlPAG) with opposing effects on nociception, with dopamine (DA) neurons driving pain relief in contrast to GABA neurons. Therefore, we used slice physiology to examine the impact of TNF-α on neuronal activity of both these subpopulations. We focused on female mice since the PAG is a sexually dimorphic region and most studies use male subjects, limiting our understanding of mechanistic variations in females. We selectively targeted GABA and DA neurons using transgenic reporter lines. Following exposure to TNF-α, there was an increase in excitability of GABA neurons along with a reduction in glutamatergic synaptic transmission. In DA neurons, TNF-α exposure resulted in a robust decrease in excitability along with a modest reduction in glutamatergic synaptic transmission. Interestingly, TNF-α had no effect on inhibitory transmission onto DA neurons. Collectively, these data suggest that TNF-α differentially affects the function of GABA and DA neurons in female mice and enhances our understanding of how TNF-α-mediated signaling modulates vlPAG function.NEW & NOTEWORTHY This study describes the effects of TNF-α on two distinct subpopulations of neurons in the vlPAG. We show that TNF-α alters both neuronal excitability and glutamatergic synaptic transmission on GABA and dopamine neurons within the vlPAG of female mice. This provides critical new information on the role of TNF-α in the potential modulation of pain, since activation of vlPAG GABA neurons drives nociception, whereas activation of dopamine neurons drives analgesia.[Abstract] [Full Text] [Related] [New Search]