These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a Novel Mutation Exacerbated the PSI Photoinhibition in pgr5/pgrl1 Mutants; Caution for Overestimation of the Phenotypes in Arabidopsis pgr5-1 Mutant. Author: Wada S, Amako K, Miyake C. Journal: Cells; 2021 Oct 26; 10(11):. PubMed ID: 34831107. Abstract: PSI photoinhibition is usually avoided through P700 oxidation. Without this protective mechanism, excess light represents a potentially lethal threat to plants. PGR5 is suggested to be a major component of cyclic electron transport around PSI and is important for P700 oxidation in angiosperms. The known Arabidopsis PGR5 deficient mutant, pgr5-1, is incapable of P700 oxidation regulation and has been used in numerous photosynthetic studies. However, here it was revealed that pgr5-1 was a double mutant with exaggerated PSI photoinhibition. pgr5-1 significantly reduced growth compared to the newly isolated PGR5 deficient mutant, pgr5hope1. The introduction of PGR5 into pgr5-1 restored P700 oxidation regulation, but remained a pale-green phenotype, indicating that pgr5-1 had additional mutations. Both pgr5-1 and pgr5hope1 tended to cause PSI photoinhibition by excess light, but pgr5-1 exhibited an enhanced reduction in PSI activity. Introducing AT2G17240, a candidate gene for the second mutation into pgr5-1 restored the pale-green phenotype and partially restored PSI activity. Furthermore, a deficient mutant of PGRL1 complexing with PGR5 significantly reduced PSI activity in the double-deficient mutant with AT2G17240. From these results, we concluded that AT2G17240, named PSI photoprotection 1 (PTP1), played a role in PSI photoprotection, especially in PGR5/PGRL1 deficient mutants.[Abstract] [Full Text] [Related] [New Search]