These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formulation and In Vivo Evaluation of a Solid Self-Emulsifying Drug Delivery System Using Oily Liquid Tocotrienols as Model Active Substance.
    Author: Lee YZ, Seow EK, Lim SC, Yuen KH, Abdul Karim Khan N.
    Journal: Pharmaceutics; 2021 Oct 25; 13(11):. PubMed ID: 34834191.
    Abstract:
    Self-emulsifying drug delivery systems (SEDDS) can improve the oral bioavailability of poorly water-soluble drugs. Solid self-emulsifying drug delivery systems (s-SEDDS) offer several advantages including improved drug stability, ease of administration, and production. Most compounds employed in developing s-SEDDS are solid in nature, with a high amount of surfactants added. The aim of this study was to develop an s-SEDDS using a tocotrienol-rich fraction (TRF) as the model liquid active substance via a simple adsorption method. The solid formulation was developed using magnesium aluminosilicate as the carrier with 70% TRF and 30% surfactants (poloxamer and Labrasol®). The formulation showed good self-emulsification efficiency with stable emulsion formed, excellent powder flowability, and small emulsion droplet size of 210-277 nm. The s-SEDDS with combined surfactants (poloxamer and Labrasol®) showed a faster absorption rate compared to preparations with only a single surfactant and enhanced oral bioavailability (3.4-3.8 times higher) compared to the non-self-emulsifying oily preparation when administered at a fasted state in rats. In conclusion, an s-SEDDS containing a high amount of TRF was successfully developed. It may serve as a useful alternative to a liquid product with enhanced oral bioavailability and the added advantage of being a solid dosage form.
    [Abstract] [Full Text] [Related] [New Search]