These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tracking historical sources of polycyclic aromatic compounds (PACs) in dated lake sediment cores near in-situ bitumen operations of Cold Lake, Alberta. Author: Smythe KK, Cooke CA, Drevnick PE, Cornett RJ, Blais JM. Journal: Environ Pollut; 2022 Feb 01; 294():118567. PubMed ID: 34838713. Abstract: Most bitumen in the Alberta oil sands (Canada) is extracted by thermal in-situ recovery. Despite the widespread use of in-situ bitumen extraction, little information is available on the release of petroleum hydrocarbons by this method to adjacent land and water. Here we analyzed the composition and abundance of parent and alkylated polycyclic aromatic compounds (PACs) in 11 radiometrically-dated lake sediment cores collected near in-situ operations at Cold Lake Alberta to assess potential petroleum contamination sources to surrounding lakes over the past century. Like open-pit mining areas, alkylated PACs in Cold Lake sediments were elevated compared to unsubstituted parent PACs and increased coeval with the onset of bitumen extraction in the area. Diagnostic ratios and pyrogenic indices showed that PAC sources to these lake sediments were dominantly pyrogenic, likely from historic forest fires, however they shifted to more petrogenic sources coeval with expanding oil sands extraction at Cold Lake. PACs in sediment from regional lakes are weakly correlated to their proximity to in-situ oil wells, once corrected for lake area. These results suggest that in-situ operations, via diesel-fueled vehicular emissions and the combustion of natural gas for steam generation, are a source of PACs to nearby lakes, but PACs did not exceed Canadian sediment quality guidelines for the protection of aquatic life.[Abstract] [Full Text] [Related] [New Search]