These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bifidobacterium longum Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-κB Signaling Pathway.
    Author: Chen Y, Chen H, Ding J, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W.
    Journal: J Agric Food Chem; 2021 Dec 08; 69(48):14593-14608. PubMed ID: 34843239.
    Abstract:
    This study aimed to explore the effects and differences of conjugated linoleic acid (CLA)-producing Bifidobacterium longum on the alleviation of dextran sulfate sodium (DSS)-induced colitis and to explore its patterns. Different B. longum strains were administered at 109 cfu/day 7 days before DSS treatment. B. longum CCFM681 significantly increased goblet cells, mucin2 (MUC2), claudin-3, α-catenin1, and ZO-1, but neither B. longum CCFM760 nor B. longum CCFM642 had those protective effects. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were downregulated, while IL-10 was upregulated by B. longum CCFM681 but neither by B. longum CCFM760 nor by B. longum CCFM642. Moreover, B. longum CCFM681 treatment inhibited the toll-like receptor-4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, B. longum CCFM681 treatment rebalanced gut microbiota via regulating the diversity and key microorganisms. Colonic CLA concentrations in mice fed with B. longum CCFM681 were significantly higher than that of DSS-exposed mice, while those in B. longum CCFM760 and B. longum CCFM642 groups showed insignificant difference compared with the DSS group. Moreover, CLA showed a significantly positive correlation with the effectiveness of relieving colitis. B. longum CCFM681 alleviated colitis by protecting the intestinal mechanical barrier, modulating the gut microbiota, and inhibiting the TLR4/NF-κB pathway and associated pro-inflammatory cytokines. These results will help the clinical trials of probiotics and the development of functional products for colitis.
    [Abstract] [Full Text] [Related] [New Search]