These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetism-induced topological transition in EuAs3. Author: Cheng E, Xia W, Shi X, Fang H, Wang C, Xi C, Xu S, Peets DC, Wang L, Su H, Pi L, Ren W, Wang X, Yu N, Chen Y, Zhao W, Liu Z, Guo Y, Li S. Journal: Nat Commun; 2021 Nov 30; 12(1):6970. PubMed ID: 34848690. Abstract: The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We systematically studied the magnetic semimetal EuAs3, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic ground state at low temperature. The topological nature in the antiferromagnetic state and the spin-polarized state has been verified by electrical transport measurements. An unsaturated and extremely large magnetoresistance of ~2 × 105% at 1.8 K and 28.3 T is observed. In the paramagnetic states, the topological nodal-line structure at the Y point is proven by angle-resolved photoemission spectroscopy. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs3 provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.[Abstract] [Full Text] [Related] [New Search]