These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel variants in the LRP4 underlying Cenani-Lenz Syndactyly syndrome. Author: Khan H, Chong AEQ, Bilal M, Nawaz S, Abdullah, Abbasi S, Hussain A, Hussain S, Ullah I, Ali H, Xue S, Ahmad W. Journal: J Hum Genet; 2022 May; 67(5):253-259. PubMed ID: 34857885. Abstract: Cenani-Lenz syndrome (CLS) is a rare autosomal-recessive congenital disorder affecting development of distal limbs. It is characterized mainly by syndactyly and/or oligodactyly, renal anomalies, and characteristic facial features. Mutations in the LRP4 gene, located on human chromosome 11p11.2-q13.1, causes the CLS. The gene LRP4 encodes a low-density lipoprotein receptor-related protein-4, which mediates SOST-dependent inhibition of bone formation and Wnt signaling. In the study, presented here, three families of Pakistani origin, segregating CLS in the autosomal recessive manner were clinically and genetically characterized. In two families (A and B), microsatellite-based homozygosity mapping followed by Sanger sequencing identified a novel homozygous missense variant [NM_002334.3: c.295G>C; p.(Asp99His)] in the LRP4 gene. In the third family C, exome sequencing revealed a second novel homozygous missense variant [NM_002334.3: c.1633C>T; p.(Arg545Trp)] in the same gene. To determine the functional relevance of these variants, we tested their ability to inhibit canonical WNT signaling in a luciferase assay. Wild type LRP4 was able to inhibit LRP6-dependent WNT signaling robustly. The two mutants p.(Asp99His) and p.(Arg545Trp) inhibited WNT signaling less effectively, suggesting they reduced LRP4 function.[Abstract] [Full Text] [Related] [New Search]