These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microscopic techniques for fabrication of polyethersulfone thin-film nanocomposite membranes intercalated with UiO-66-SO3 H for heavy metal ions removal from water. Author: Gul S, Latafat KR, Asma M, Ahmad M, Kilic Z, Zafar M, Ding Y, Malik A. Journal: Microsc Res Tech; 2022 Apr; 85(4):1289-1299. PubMed ID: 34862680. Abstract: Environmental remediation of heavy metals from wastewater is becoming popular area in the field of membrane technology. Heavy metals are toxic in nature and have ability to bioaccumulate in water bodies. In current study, zirconium-based metal organic frameworks (MOFs), that is, UiO-66 and UiO-66-SO3 H with a mean diameter of 200 nm were synthesized and intercalated into polyethersulfone (PES) substrate to fabricate thin-film nanocomposite (TFN) membranes via an interfacial polymerization (IP) method. TFN membranes exhibit higher selectivity and permeability as compared to thin-film composite (TFC) membranes for heavy metals, such as cadmium (Cd) and mercury (Hg). Zirconium-based MOFs are highly stable in water and due to smaller pore size enhanced hydrophilicity of TFN membranes. In addition, TFN membrane with functionalized MOF (UiO-66-SO3 H) performed best as compared to TFC and TFN with UiO-66 MOF. The effect of loading of different weight percentages (wt%) of both MOFs for TFN membranes was also investigated. The TFN membranes with loading (0.2 wt%) of UiO-66-SO3 H displayed highest permeability of 9.57 LMH/bar and notable rejections of 90% and 87.7% toward Cd and Hg, respectively. To our best understanding, it is the first study of intercalating functionalized UiO-66-SO3 H in TFC membranes by IP and their application on heavy metals especially Cd and Hg.[Abstract] [Full Text] [Related] [New Search]