These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microbiota transplantation from younger to older mice could restore lost immunity to effectively clear salmonella infection in Th2-biased BALB/c mice. Author: Pradhan S, Ray P, Aich P. Journal: Life Sci; 2022 Jan 01; 288():120201. PubMed ID: 34864063. Abstract: AIMS: The composition, overtly abundance, and diversity of gut microbiota, play a significant role in maintaining physiological homeostasis with age. Reports revealed that the gut microbial profile might be correlated with immunity and metabolism. It is, therefore, tantamount to know if an older individual can achieve the immunity and metabolic profile of a younger individual by receiving the gut microbiome of a younger individual. In the current report, we have studied the effects of cecal microbiota transplantation (CMT) from younger to older mice. MATERIALS AND METHODS: In this study, older BALB/c mice (23 weeks) received CMT from younger BALB/c mice (3 weeks). KEY FINDINGS: CMT recipient mice showed altered expressions of immune and tight junction protein genes in the colon of mice, while the non-CMT recipient mice did not. Older mice were treated with AVNM to make them compatible with CMT. Further data from metabolite studies revealed that AVNM treatment mainly affected the aromatic amino acid biosynthesis pathway while CMT mostly affected the metabolism of different carbohydrates. We repeated the analysis in C57BL/6 mice without any significant effects of CMT. SIGNIFICANCE: Results revealed that mice who received CMT showed more efficient restoration of gut microbiota than non-CMT recipient mice. CMT caused the alleviation of Salmonella infection and efficient recovery of the cecal index in the mice following antibiotics treatment.[Abstract] [Full Text] [Related] [New Search]