These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparison of the N-linked glycopeptides of DQw1 and DR1 molecules. Author: Iturbe S, Narasimhan S, Merrick JM, Falk JA, Letarte M. Journal: J Immunol; 1986 Jun 15; 136(12):4588-95. PubMed ID: 3486905. Abstract: HLA class II molecules have been isolated from a [3H]mannose-labeled GM3104 B lymphoblastoid cell line with the phenotype DQw1, DR1. The DQw1 molecules were purified by affinity to 77-34 IgG specifically reactive with the DQw1 specificity. The DR1 molecules were separated into two subsets, DR1a (70 to 80%) and DR1b (20 to 30%), by sequential affinity to 21r5-IgG and 21w4-IgG Sepharose. The alpha- and beta-chains of [3H]mannose-labeled DQw1, DR1a, and DR1b molecules were separated by SDS-PAGE and were recovered by electrophoretic elution. The isolated chains were digested with pronase and the glycopeptides were fractionated by sequential lectin chromatography on immobilized concanavalin A (Con A), Lens culinaris (Lens), and Ricinus communis agglutinin type I (RCA). The N-linked glycopeptides derived from the alpha-chains of DQw1, DR1a, or DR1b showed similar profiles on Con A Sepharose: 45% unbound (ConA I), 25% weakly bound (ConA II), and 30% tightly bound (ConA III). The glycopeptides derived from the beta-chains of DQw1 or DR1 molecules were found almost exclusively (80%) in the fraction unbound to Con A Sepharose, with only 11% and 9% in ConA II and ConA III fractions, respectively. The observation that most of the binding to Con A is associated with the alpha-chain glycopeptides suggests that binding of membrane-associated class II molecules to that lectin must be mediated by the alpha-chains. Binding to Lens Sepharose was higher for beta-(50%) than for alpha-(15%) chain glycopeptides, suggesting that within the intact glycoproteins, the beta-chains are responsible for the interaction with Lens. The ConA I fractions derived from the alpha-chain glycopeptides of either DQw1 or DR1 molecules were separated on RCA-agarose as follows: 60% unbound, 17% retarded, and 20% bound and eluted with 0.1 M galactose. The ConA I fractions derived from the beta-chain glycopeptides of either subset of class II molecules also had a similar profile on RCA-agarose: 70% unbound, 16% retarded, and 10% bound and eluted specifically. After removal of sialic acid residues, all of the ConA I fractions of alpha- and beta-chains bound to RCA-agarose. A high degree of similarity was observed between the corresponding glycopeptides of the three subsets of class II molecules and between the complex N-linked structures of alpha- and beta-chains. Minor variations were observed between DR1a and DR1b glycopeptides which appear greater than those observed between DR1 and DQw1 glycopeptides.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]