These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PEGylation Improved Electrochemiluminescence Supramolecular Assembly of Iridium(III) Complexes in Apoferritin for Immunoassays Using 2D/2D MXene/TiO2 Hybrids as Signal Amplifiers.
    Author: Yang L, Wu T, Du Y, Zhang N, Feng R, Ma H, Wei Q.
    Journal: Anal Chem; 2021 Dec 21; 93(50):16906-16914. PubMed ID: 34872250.
    Abstract:
    Dynamic self-assembly of iridium complexes in water-soluble nanocontainers is an important bottom-up process for fabricating electrochemiluminescence (ECL) bioprobes. PEGylated apoferritin (PEG-apoHSF) as the host offers a confined space to alter and modify the self-assembly of trans-bis(2-phenylpyridine)(acetylacetonate)iridium(III) [Ir(ppy)2(acac)] based on a pH-dependent depolymerization/reassembly pathway, allowing the formation of ECL-active iridium cores in PEG-apoHSF cavities (Ir@PEG-apoHSF). With an improved encapsulation ratio in PEG-apoHSF, the coreactant ECL behavior of the fabricated Ir@PEG-apoHSF nanodots with tri-n-propylamine (TPrA) was further demonstrated, exhibiting maximum ECL emission at 530 nm that was theoretically dominated by the band gap transition. The application of Ir@PEG-apoHSF as a bioprobe in a "signal-on" ECL immunosensing system was developed based on electroactive Ti3C2Tx MXenes/TiO2 nanosheet (Ti3C2Tx/TiO2) hybrids. Combining with the efficiently catalyzed electro-oxidation of TPrA and Ir(ppy)2(acac) by Ti3C2Tx/TiO2 hybrids, the developed immunosensor showed dramatically amplified ECL responses toward the target analyte of neuron-specific enolase (NSE). Under experimental conditions, linear quantification of NSE from 100 fg/mL to 50 ng/mL was well established by this assay, achieving a limit of detection (LOD) of 35 fg/mL. The results showcased the capability of PEGylated apoHSF to host and stabilize water-insoluble iridium complexes as ECL emitters for aqueous biosensing and immunoassays.
    [Abstract] [Full Text] [Related] [New Search]