These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mesenchyme formation from the trigeminal placodes of the mouse embryo. Author: Nichols DH. Journal: Am J Anat; 1986 May; 176(1):19-31. PubMed ID: 3487970. Abstract: The trigeminal placode is a thickened region of ectodermal epithelium located along the side of the embryonic head. Mesenchyme escapes from the placode to form neurons of the trigeminal (V) ganglion. To further our knowledge of the morphogenesis of this escape, plastic thick sections were cut from mouse embryos and stained for light microscopy by using a technique which revealed escaping mesenchyme. The escape of trigeminal mesenchyme began at approximately 12 somites of age and was substantially complete by 30 somites. These results provided spatial/temporal orientation for a subsequent electron microscopic study. The first ultrastructural manifestation of escape was the penetration of an otherwise continuous basal lamina by small cell processes. The presence of longitudinally oriented microtubules within these processes suggests that mesenchymal cells escape through the basal lamina by using microtubules to direct/move their contents (e.g., the cell nucleus) into an enlarging process. Nuclei were distorted as they passed into these processes. This distortion suggests that basal lamina, together with a possible contribution from basal microfilaments, forms a rigid obstruction which is disrupted in the region from which a process is formed. In some cases a collar of basal lamina was observed around the necks of processes, but their distal membranes were invariably lamina-free. This lamina-free membrane is possibly that which is newly formed to accommodate the growing process. In later stages of escape, instances were observed in which the lamina was completely absent beneath an escaping cell and partially degraded beneath adjacent cells as well. These instances suggest that enzymatic digestion may play a role in degrading the lamina during mesenchymal escape. Apical desmosomes were often retained beyond the initial stages of escape. Mechanisms involved in their disruption are thus not among those which initiate escape.[Abstract] [Full Text] [Related] [New Search]