These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MRI Knee Domain Translation for Unsupervised Segmentation By CycleGAN (data from Osteoarthritis initiative (OAI)).
    Author: Felfeliyan B, Hareendranathan A, Kuntze G, Jaremko J, Ronsky J.
    Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4052-4055. PubMed ID: 34892119.
    Abstract:
    Accurate quantification of bone and cartilage features is the key to efficient management of knee osteoarthritis (OA). Bone and cartilage tissues can be accurately segmented from magnetic resonance imaging (MRI) data using supervised Deep Learning (DL) methods. DL training is commonly conducted using large datasets with expert-labeled annotations. DL models perform better if distributions of testing data (target domains) are close to those of training data (source domains). However, in practice, data distributions of images from different MRI scanners and sequences are different and DL models need to re-trained on each dataset separately. We propose a domain adaptation (DA) framework using the CycleGAN model for MRI translation that would aid in unsupervised MRI data segmentation. We have validated our pipeline on five scans from the Osteoarthritis Initiative (OAI) dataset. Using this pipeline, we translated TSE Fat Suppressed MRI sequences to pseudo-DESS images. An improved MaskRCNN (IMaskRCNN) instance segmentation network trained on DESS was used to segment cartilage and femoral head regions in TSE Fat Suppressed sequences. Segmentations of the I-MaskRCNN correlated well with approximated manual segmentation obtained from nearest DESS slices (DICE = 0.76) without the need for retraining. We anticipate this technique will aid in automatic unsupervised assessment of knee MRI using commonly acquired MRI sequences and save experts' time that would otherwise be required for manual segmentation.Clinical relevance- This technique paves the way to automatically convert one MRI sequence to its equivalent as if acquired by a different protocol or different magnet, facilitating robust, hardware-independent automated analysis. For example, routine clinically acquired knee MRI could be converted to high-resolution high-contrast images suitable for automated detection of cartilage defects.
    [Abstract] [Full Text] [Related] [New Search]