These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Monte Carlo Characterization of Short-Wave Infrared Optical Wavelengths for Biosensing Applications. Author: Budidha K, Chatterjee S, Qassem M, Kyriacou PA. Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4285-4288. PubMed ID: 34892169. Abstract: Short-wave infrared (SWIR) spectroscopy has shown great promise in probing the composition of biological tissues. Currently there exists an enormous drive amongst researchers to design and develop SWIR-based optical sensors that can predict the concentration of various biomarkers non-invasively. However, there is limited knowledge regarding the interaction of SWIR light with vascular tissue, especially in terms of parameters like the optimal source-detector separation, light penetration depth, optical pathlength, etc., all of which are essential components in designing optical sensors. With the aim to determine these parameters, Monte Carlo simulations were carried out to examine the interaction of SWIR light with vascular skin. SWIR photons were found to penetrated only 1.3 mm into the hypodermal fat layer. The highest optical pathlength and penetration depths were seen at 1mm source-detector separation, and the lowest being 0.7mm. Although the optical pathlength varied significantly with increasing source-detector separation at SWIR wavelengths, penetration depth remained constant. This may explain why collecting optical spectra from depth of tissue at SWIR wavelengths is more challenging than collecting optical spectra from near-infrared wavelengths, where both the optical pathlength and penetration depth change rapidly with source-detector separation.[Abstract] [Full Text] [Related] [New Search]