These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Author: Li J, Sun C, Cai W, Li J, Rosen BP, Chen J. Journal: Mutat Res Rev Mutat Res; 2021; 788():108396. PubMed ID: 34893161. Abstract: Enzymatic methylation catalyzed by methyltransferases has a significant impact on many human biochemical reactions. As the second most ubiquitous cofactor in humans, S-adenosyl-l-methionine (SAM or AdoMet) serves as a methyl donor for SAM-dependent methyltransferases (MTases), which transfer a methyl group to a nucleophilic acceptor such as O, As, N, S, or C as the byproduct. SAM-dependent methyltransferases can be grouped into different types based on the substrates. Here we systematically reviewed eight types of methyltransferases associated with human diseases. Catechol O-methyltransferase (COMT), As(III) S-adenosylmethionine methyltransferase (AS3MT), indolethylamine N-methyltransferase (INMT), phenylethanolamine N-methyltransferase (PNMT), histamine N-methyltransferase (HNMT), nicotinamide N-methyltransferase (NNMT), thiopurine S-methyltransferase (TPMT) and DNA methyltansferase (DNMT) are classic SAM-dependent MTases. Correlations between genotypes and disease susceptibility can be partially explained by genetic polymorphisms. The physiological function, substrate specificity, genetic variants and disease susceptibility associated with these eight SAM-dependent methyltransferases are discussed in this review.[Abstract] [Full Text] [Related] [New Search]