These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel sulphonamide-bearing methoxyquinazolinone derivatives as anticancer and apoptosis inducers: synthesis, biological evaluation and in silico studies.
    Author: Alqahtani AS, Ghorab MM, Nasr FA, Ahmed MZ, Al-Mishari AA, Attia SM.
    Journal: J Enzyme Inhib Med Chem; 2022 Dec; 37(1):86-99. PubMed ID: 34894963.
    Abstract:
    We synthesised a new series of sulphonamide-bearing quinazolinone derivatives 5-18 and evaluated their in vitro cytotoxicity in various cancer cell lines (A549, HepG-2, LoVo and MCF-7) and in normal human cells (HUVEC). Compounds 6 and 10 exhibited the higher activity against all the cancer cell lines compared with 5-flourourcil as positive control. The ability of the most promising compounds 6 and 10 to induce cell cycle arrest and apoptosis in breast cancer (MCF-7) cells was evaluated by flow cytometry. Reverse transcriptase-polymerase chain reaction and western blotting were used to evaluate the expression of apoptosis-related markers. We found that the 2-tolylthioacetamide derivative 6 and the 3-ethyl phenyl thioacetamide derivative 10 exhibited cytotoxic activity comparable to that of 5-fluorouracil as reference drug in MCF-7 and LoVo colon cancer cells. Cell cycle analysis showed a concentration-dependent accumulation of cells in the sub-G1 phase upon treatment with both compounds. The Annexin V-fluorescein isothiocyanate/propidium iodide assay showed that the compounds 6 and 10 increased the early and late apoptosis cell death modes in a dose-dependent manner. These compounds downregulated the expression of B-cell lymphoma-2 (Bcl-2), while increasing that of p53, Bcl-2-like protein 4, and caspase-7, at the mRNA and protein levels. Molecular docking of compounds 6 and 10 with Bcl-2 predicted them to show moderate - high binding affinity (6: -7.5 kcal/mol, 10: -7.9 kcal/mol) and interactions with key central substrate cavity residues. Overall, compounds 6 and 10 were found to be promising anticancer and apoptosis-inducing agents.
    [Abstract] [Full Text] [Related] [New Search]