These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2.
    Author: Hoekstra MM, Jan M, Katsioudi G, Emmenegger Y, Franken P.
    Journal: Elife; 2021 Dec 13; 10():. PubMed ID: 34895464.
    Abstract:
    In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements. Circadian rhythms are daily cycles in behavior and physiology which repeat approximately every 24 hours. The master regulator of these rhythms is located in a small part of the brain called the supra-chiasmatic nucleus. This brain structure regulates the timing of sleep and wakefulness and is also thought to control the daily rhythms of cells throughout the body on a molecular level. It does this by synchronizing the activity of a set of genes called clock genes. Under normal conditions, the levels of proteins coded for by clock genes change throughout the day following a rhythm that matches sleep-wake patterns. However, keeping animals and humans awake at their preferred sleeping times affects the protein levels of clock genes in many tissues of the body. This suggests that, in addition to the supra-chiasmatic nucleus, sleep-wake cycles may also influence clock-gene rhythms throughout the body. To test this theory, Hoekstra, Jan et al. measured the levels of PERIOD-2, a protein coded for by the clock gene Period-2, while tracking sleep-wake states in mice. They did this by imaging a bioluminescent version of the PERIOD-2 protein in the brain and the kidneys, at the same time as they recorded the brain activity, movement and muscle response of animals. Results showed that PERIOD-2 increased on waking and decreased when mice fell asleep. Additionally, in mice lacking a circadian rhythm in sleep-wake behavior – whose changes in PERIOD-2 levels with respect to time were greatly reduced – imposing a regular sleep-wake cycle restored normal PERIOD-2 rhythmicity. Next, Hoekstra, Jan et al. developed a mathematical model to understand how sleep-wake cycles together with circadian rhythms affect clock-gene activity in the brain and kidneys. Computer simulations suggested that sleep-wake cycles and circadian factors act as forces of comparable strength driving clock-gene dynamics. Both need to act in concert to keep clock-genes rhythmic. The model also predicted the large and immediate effects of sleep deprivation on PERIOD-2 levels, giving further credence to the idea that waking accelerated clock-gene rhythms while sleeping slowed them down. Modelling also suggested that having regular clock-gene rhythms protects against sleep disturbances. In summary, this work shows how sleep patterns contribute to the daily rhythms in clock genes in the brain and body. The findings support the idea that well-timed sleep-wake schedules could help people to adjust to new time zones. It might also be useful to inform other strategies to reduce the health impacts of shift work.
    [Abstract] [Full Text] [Related] [New Search]