These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The influence of T lymphocyte subsets and humoral factors on colony formation by human bone marrow and blood megakaryocyte progenitor cells in vitro. Author: Geissler D, Lu L, Bruno E, Yang HH, Broxmeyer HE, Hoffman R. Journal: J Immunol; 1986 Oct 15; 137(8):2508-13. PubMed ID: 3489766. Abstract: Cellular and humoral influences of T lymphocytes on human megakaryocyte colony formation in vitro were assessed by using a microagar system. Megakaryocyte colony formation from nonadherent low density T lymphocyte-depleted (NALDT-) bone marrow cells was increased significantly after the addition of aplastic anemia serum (AAS) or purified megakaryocyte colony-stimulating factor (Meg-CSF). The addition of conditioned medium obtained from phytohemagglutinin-stimulated T lymphocytes replaced, at least partially, the requirement for AAS or purified Meg-CSF for the growth of megakaryocyte colonies. The cellular influence of T lymphocytes and T lymphocyte subsets on megakaryocyte colony formation was assessed by removing either T cells from nonadherent peripheral blood mononuclear cells with monoclonal OKT4, OKT8, or OKT3 antibodies plus complement, or by adding back populations of bone marrow or blood T4+ or T8+ lymphocytes, isolated by means of fluorescence-activated cell sorting, respectively, to NALDT--bone marrow or -blood cells. When sorted T cell subpopulations were added to a fixed number of NALDT--bone marrow or -peripheral blood cells in the presence of AAS or Meg-CSF, T4+ cells enhanced megakaryocyte colony formation and T8+ cells decreased it. These studies demonstrate that although the stimulation of megakaryocytic progenitor cells by Meg-CSF may not require the presence of monocytes or T lymphocytes, T4+ lymphocytes enhance and T8+ lymphocytes down-regulate megakaryocyte colony formation induced by Meg-CSF. These observations suggest that the immune system is capable of modulating the proliferative response of human megakaryocytic progenitor cells to Meg-CSF.[Abstract] [Full Text] [Related] [New Search]