These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein synthesis involvement in regulating pituitary-induced progesterone levels in ovarian follicles of Rana pipiens.
    Author: Petrino TR, Schuetz AW.
    Journal: J Exp Zool; 1986 Sep; 239(3):411-21. PubMed ID: 3489812.
    Abstract:
    Involvement of protein synthesis in frog pituitary homogenate (FPH)-induced progesterone production and/or accumulation in ovarian follicles was investigated. In amphibians, cycloheximide (C), an inhibitor of protein synthesis, inhibits progesterone and FPH-induced germinal vesicle breakdown (GVBD). However, the site and mechanisms of action of cycloheximide within ovarian follicles have not been elucidated. Intrafollicular progesterone produced by FPH is considered to mediate oocyte maturation; thus, cycloheximide may interfere with production and/or action of progesterone. Simultaneous treatment of FPH-stimulated follicles with cycloheximide inhibited FPH-induced progesterone accumulation (measured by RIA) and the accompanying-GVBD in a dose-dependent fashion. Inhibitory effects of cycloheximide on either FPH-induced progesterone production or GVBD were not reversed when follicles were washed and returned to fresh medium devoid of FPH and cycloheximide. However, subsequent restimulation of washed follicles with FPH resulted in increased progesterone levels and oocyte maturation. The extent of reversibility, in terms of GVBD and progesterone production, after FPH restimulation varied between animals. Pretreatment of follicles with cycloheximide for 6 hours, without FPH, had little or no effect on progesterone production when follicles were washed and treated with FPH. Delayed addition of cycloheximide to follicles following FPH stimulation blocked further progesterone accumulation as indicated by measurement of intrafollicular progesterone at the time of cycloheximide addition and at the end of the incubation period. The results indicate that cycloheximide rapidly inhibits progesterone production and that continuous protein synthesis is required for progesterone accumulation. Furthermore, protein synthesis does not appear to be required for progesterone metabolism since intrafollicular progesterone declined with prolonged culture even in the presence of cycloheximide. The nature of protein(s) involved in follicular progesterone production remains to be elucidated. FPH mediation of oocyte maturation within ovarian follicles appears to depend upon protein synthesis in somatic follicle cells, which is required for progesterone production, and in the oocyte, to mediate the response to the steroid trigger.
    [Abstract] [Full Text] [Related] [New Search]