These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of key immune genes for sepsis-induced ARDS based on bioinformatics analysis. Author: Chen Y, Qiu C, Cai W. Journal: Bioengineered; 2022 Jan; 13(1):697-708. PubMed ID: 34898369. Abstract: Regarding the extremely high mortality caused by sepsis-induced acute respiratory distress syndrome (ARDS), it is urgent to develop new biomarkers of sepsis-induced ARDS for treatment. Here, 532 differential expression genes (DEGs) related to sepsis and 433 DEGs related to sepsis-induced ARDS were screened in the GSE32707 dataset. Compared with sepsis samples, sepsis ARDS samples showed a higher infiltration of activated memory CD4 T cells and naive B cells, but a relatively lower infiltration of CD8 T cells. The pink and green modules which are significantly associated with sepsis-induced ARDS were then screened through co-expression network analysis. Differentially up-regulated GYPE and aberrantly down-regulated HSPB1, were subsequently found in the pink module of ARDS. CD81 and RPL22, two differentially low-expressed genes peculiar to ARDS, were identified in the green module. The function of CD81 was verified at the cellular level, and it was found that the up-regulation of CD81 in A549 could alleviate the LPS-induced injury of A549 cells. More importantly, the overexpressed CD81 can also increase the content of CD4+ CD25+ Foxp3+ Treg in Jurkat cells, and after the co-culture of overexpressed CD81 Jurkat cells with LPS treatment A549 cells, the LPS-induced lung epithelial cell damage can be improved. Overall, four new plasma biomarker candidates were found in sepsis-induced ARDS, and we verified that CD81 may play critical roles in the biological and immunological processes of sepsis-induced ARDS.[Abstract] [Full Text] [Related] [New Search]