These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ternary association reactions of H3 O+ , NO+ and O2+• with N2 , O2 , CO2 and H2 O; implications for selected ion flow tube mass spectrometry analyses of air and breath. Author: Smith D, Španěl P. Journal: Rapid Commun Mass Spectrom; 2022 Mar 30; 36(6):e9241. PubMed ID: 34904315. Abstract: RATIONALE: The reactions of the reagent ions used for trace gas analysis in selected ion flow tube mass spectrometry (SIFT-MS), R+ , viz. H3 O+ , NO+ and O2+ , with the major gases in air and breath samples, M, viz. N2 , O2 , CO2 and H2 O, are investigated. These reactions are seen to form weakly-bound adduct ions, R+ M, by ternary association reactions that must not be mistaken for genuine volatile organic compound (VOC) analyte ions. METHODS: The ternary association rate coefficients mediated by helium (He) carrier gas atoms, k3a , have been determined for all combinations of R+ and M, which form R+ M adduct ions ranging in m/z from 47 (H3 O+ N2 ) to 76 (O2+• CO2 ). This was achieved by adding variable amounts of M (up to 0.5 mbar pressure) into the He carrier gas (pressure of 1.33 mbar) in a SIFT-MS flow tube at 300 K. Parabolic curvature was observed on some of the semi-logarithmic decay curves that allowed the rate coefficients mediated by M molecules, k3b , to be estimated. RESULTS: Values of k3a were found to range from 1 × 10-31 cm6 s-1 to 5 × 10-29 cm6 s-1 , which form mass spectral R+ M "ghost peaks" of significant strength when analysing VOCs at parts-per-billion concentrations. It was seen that the R+ M adduct ions (except when M is H2 O) react with H2 O molecules by ligand switching forming the readily recognised monohydrates of the initial reagent cations R+ H2 O. Whilst this ligand switching diminishes the R+ M adduct ghost peaks, it does not eliminate them entirely. CONCLUSIONS: The significance of these adduct ions for trace gas analysis by SIFT-MS in the low m/z region is alluded to, and some examples are given of m/z spectral overlaps of the R+ M and R+ H2 O adduct cations with analyte cations of VOCs formed by analysis of complex media like exhaled breath, warning that ghost peaks will be enhanced using nitrogen carrier gas in SIFT-MS.[Abstract] [Full Text] [Related] [New Search]