These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: miR-142a-3p Enhances FlaA N/C Protection Against Radiation-Mediated Intestinal Injury by Modulating the IRAK1/NF-κB Signaling Pathway. Author: Liu T, Wu DM, Zhang F, Zhang T, He M, Zhao YY, Li J, Li L, Xu Y. Journal: Int J Radiat Oncol Biol Phys; 2022 Apr 01; 112(5):1256-1268. PubMed ID: 34906656. Abstract: PURPOSE: Our purpose was to investigate the role of recombinant protein flagellin A N/C (FlaA N/C) protein-mediated pyroptosis inhibition and related miRNA in radiation protection. METHODS AND MATERIALS: Mice received 10 Gy irradiation after FlaA N/C pretreatment, IRAK-1/4 Inhibitor I treatment, or pyrrolidine dithiocarbamate treatment. Human intestinal epithelial cells (HIEC) received 10 Gy irradiation after FlaA N/C pretreatment, overexpressed miR-142a-3p with miR-142a-3p mimics, or inhibited miR-142a-3p with miR-142a-3p inhibitor. Mouse & Rat miRNA OneArray determined the change in relevant miRNA after FlaA N/C pretreatment; real-time polymerase chain reaction detected IRAK1 and miR-142a-3p expression; a CCK-8 assay evaluated cell viability; LDH release analyzed cytotoxicity; caspase-1 activity assay, interleukin-1β level, and flow cytometry analyzed pyroptosis in cells; hematoxylin-eosin staining evaluated the damage to intestinal tissue; CO-IP detected the inflammation activation; immunohistochemistry, Western blot analysis, and immunofluorescence analyzed activation of pyroptosis-related proteins and the activation of NF-kB signaling pathways; and luciferase reporter assay and fluorescence in situ hybridization detected the interaction between miR-142a-3p and IRAK1. RESULTS: FlaA N/C reduced radiation-induced pyroptosis in vivo and in vitro, and miR-142a-3p expression increased after FlaA N/C pretreatment. Upregulating the expression of miR-142a-3p inhibited radiation-induced pyroptosis in HIEC, and downregulating the expression of miR-142a-3p led to radiation-induced pyroptosis in HIEC after FlaA N/C pretreatment. IRAK1 was a direct target of miR-142a-3p and played an important role in radiation-induced pyroptosis in HIEC. Inhibiting IRAK1 reduced radiation-mediated pyroptosis in mice intestines. miR-142a-3p downregulated IRAK1 and suppressed the NF-kB pathway. Inhibiting the NF-kB signaling pathway can reduce radiation-mediated pyroptosis in mice intestines. CONCLUSIONS: Our findings indicated this new radioprotectant protein regulates miR-142a-3p, effectively inhibiting radiation-induced pyroptosis mediated by the IRAK1/NF-κB signaling pathway in intestinal cells.[Abstract] [Full Text] [Related] [New Search]