These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of ribonucleases on cell-mediated lympholysis reaction and on GM-CFC colonies in bone marrow culture. Author: Soucek J, Chudomel V, Potmĕsilová I, Novák JT. Journal: Nat Immun Cell Growth Regul; 1986; 5(5):250-8. PubMed ID: 3491300. Abstract: Natural dimer of bovine seminal ribonuclease (AS RNase) suppressed markedly DNA synthesis in allogeneic mixed lymphocyte culture (MLC) of normal human lymphocytes and simultaneously inhibited induction of cytotoxic effector cells within the sensitization phase of indirect cell-mediated lympholysis (CML) reaction. The last purification step of the AS RNase isolation procedure did not increase the suppressive activity of AS RNase compared to a less purified preparation (ZS RNase), thus, the later preparation was mostly used. ZS RNase (10 micrograms/ml) caused 50% inhibition of MLC reaction whereas pancreatic ribonuclease (A RNase) was 10 times less effective. The suppressive effect of RNases added in the beginning of the sensitization phase of the CML reaction correlated with that observed in the MLC reaction. The concentrations of ZS RNase (10 micrograms/ml), A RNase (100 micrograms/ml), and additionally tested cyclosporin A (0.5 microgram/ml) resulted in nearly total abrogation of cytolysis in CML. ZS RNase added after the sensitization of effector cells did not influence their cytolytic action on target cells within the destruction phase of CML. Natural killer and killer cell activities in normal peripheral lymphocytes were not inhibited by ZS RNase at the concentration of 330 micrograms/ml. ZS RNase (20 micrograms/ml), cocultivated 1 h with normal human bone marrow cells and then washed off, enhanced formation of GM-CFC colonies in semisolid agar culture up to 200%. Simultaneously tested antilymphocyte globulin increased the number of GM-CFC colonies at the average of 128%. This stimulating effect on colony formation appeared also in bone marrow culture of patients suffering with various hematological disorders. The possibility of utilizing the preparations gained from seminal plasma in clinical bone marrow transplantation is discussed.[Abstract] [Full Text] [Related] [New Search]