These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens.
    Author: Wang S, Hofacre CL, Wanda SY, Zhou J, Callum RA, Nordgren B, Curtiss R.
    Journal: Poult Sci; 2022 Feb; 101(2):101592. PubMed ID: 34922043.
    Abstract:
    Gram-positive Clostridium perfringens type G, the causative agent of necrotic enteritis (NE), has gained more attention in the poultry industry due to governmental restrictions on the use of growth-promoting antibiotics in poultry feed. Our previous work has proved that regulated delayed lysis Salmonella vaccines delivering a plasmid encoding an operon fusion of the nontoxic C-terminal adhesive part of alpha toxin and a GST-NetB toxin fusion were able to elicit significant protective immunity in broilers against C. perfringens challenge. We recently improved our S. Typhimurium antigen delivery vaccine strain by integrating a rhamnose-regulated O-antigen synthesis gene enabling a triple-sugar regulation system to control virulence, antigen-synthesis and lysis in vivo traits. The strain also includes a ΔsifA mutation that was previously shown to increase the immunogenicity of and level of protective immunity induced by Salmonella vectored influenza and Eimeria antigens. The new antigen-delivery vaccine vector system confers on the vaccine strain a safe profile and improved protection against C. perfringens challenge. The strain with the triple-sugar regulation system delivering a regulated lysis plasmid pG8R220 encoding the PlcC and GST-NetB antigens protected chickens at a similar level observed in antibiotic-treated chickens. Feed conversion and growth performance were also similar to antibiotic-treated chickens. These studies made use of a severe C. perfringens challenge with lesion formation and mortality enhanced by pre-exposure to Eimeria maxima oocysts. The vaccine achieved effectiveness through three different immunization routes, oral, spray and in drinking water. The vaccine has a potential for application in commercial hatcher and broiler-rearing conditions.
    [Abstract] [Full Text] [Related] [New Search]