These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The origin of Uranium in groundwater of the eastern Halkidiki region, northern Greece. Author: Kazakis N, Busico G, Ntona MM, Philippou K, Kaprara E, Mitrakas M, Bannenberg M, Ioannidou A, Pashalidis I, Colombani N, Mastrocicco M, Voudouris K. Journal: Sci Total Environ; 2022 Mar 15; 812():152445. PubMed ID: 34942244. Abstract: Uranium (U) pollution in groundwater has become a serious problem worldwide. Even in low concentrations, U has both radiological and toxicological impacts on human health. In this study an integrated hydrogeological approach was applied to conceptualize an aquifer system, and determine the origin of U detected in the aquifer of the eastern Halkidiki region in northern Greece. Data from measurements of groundwater level and hydrochemical and stable isotope analyses of groundwater samples were applied to perform geochemical modeling and multivariate statistical analysis. The modeling and statistical analysis identified three hydrogeochemical groups within the studied hydro-system, and U(VI) as the dominant U species. The first group is linked to the deeper aquifer which is characterized by water-rock interactions with weathering products of granodiorite. In this group the dominant U species is uranyl phosphate and U concentration is 3.7 μg/L. The upper aquifer corresponds to the second hydrogeochemical group where U concentrations are mainly influenced by high concentrations of nitrogen species (NO3- and NO2-). Factor analysis further discriminated the upper aquifer into a saline coastal zone and an inland zone impacted by agricultural activities. The third hydrogeochemical group presents the highest concentration of U (up to 15 μg/L) in groundwater and corresponds to the internal aquifer system. The U within this system is triggered by the presence of Mn2+, while the long residence time of the groundwater contributes synergistically to the hydrogeochemical process. Manganese triggers U oxidation in parallel with Fe2+ precipitation that acts as a regulator of U concentration. Groundwater depletion of the upper aquifers promotes the up-coning of geothermal fluids from fault zones leading to increased concentrations of U in the mid-depth aquifers.[Abstract] [Full Text] [Related] [New Search]