These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CRISPR/Cas9-mediated demethylation of FOXP3-TSDR toward Treg-characteristic programming of Jurkat T cells. Author: Wilk C, Effenberg L, Abberger H, Steenpass L, Hansen W, Zeschnigk M, Kirschning C, Buer J, Kehrmann J. Journal: Cell Immunol; 2022 Jan; 371():104471. PubMed ID: 34954490. Abstract: Demethylation of FOXP3-TSDR (Treg specific demethylated region) is a hallmark of stable differentiation and suppressive function of regulatory T (Treg) cells. Previous protocols aiming at human naïve T cell differentiation failed to implement a Treg cell specific epigenetic signature. Ten-eleven translocation (TET) enzymes catalyze DNA demethylation. Plasmids towardexpression of a fusion protein encompassing nonfunctional Cas9, the catalytic domain of TET1, blue fluorescent protein, and encoding single guide RNAs (sgRNAs) targeting specific segments of the FOXP3-TSDR were engineered and transfected into Jurkat T cells. FOXP3-TSDR methylation was analyzed by deep-amplicon bisulfite sequencing while cellular Foxp3, Tbet, Gata3, and Rorgt mRNA levels were determined by real-time PCR. Overexpression of dCas9TET1 significantly decreased Jurkat cell FOXP3-TSDR methylation and increased Foxp3 mRNA expression while expressions of master transcription factor mRNAs of other major T cell lineages remained largely unaffected. dCas9-TET1 construct transfection mediated Treg programming of patients' primary T cells might be feasible.[Abstract] [Full Text] [Related] [New Search]