These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Down Syndrome Candidate Region 1 Isoform 1L regulated tumor growth by targeting both angiogenesis and tumor cells. Author: Chen C, Cui P, Zhao K, Niu G, Hou S, Zhao D, Zeng H. Journal: Microvasc Res; 2022 Mar; 140():104305. PubMed ID: 34958805. Abstract: Angiogenesis is critical for solid tumor growth beyond its minimal size. Previously, we reported that Down Syndrome Candidate Region 1 isoform 1L (DSCR1-1L) was one of the most up-regulated genes in endothelial cells induced by VEGF and histamine, and regulated endothelial cell proliferation, migration and angiogenesis. However, it was not known whether DSCR1-1L played a role in tumor growth. In this study, we found that DSCR1-1L shRNAs significantly inhibited the growth of transplanted melanoma in mice and its associated tumoral angiogenesis. In the gain of function assay, overexpression of DSCR1-1L cDNA in mouse endothelium is sufficient to significantly increase the tumor initiation induced by carcinogen, the growth of xenografted tumor, and the tumor metastasis in our endothelially-expressed DSCR1-1L transgenic mice, in which angiogenesis was induced. It was the first time to find that DSCR1-1L was also expressed in various tumor cells. DSCR1-1L shRNAs inhibited, but overexpression of DSCR1-1L cDNA increased, the tumor cell proliferation and migration. Most recently, we reported that DSCR1-1L modulated angiogenesis by down-regulation of VE-cadherin expression. Here, we found that DSCR1-1L down-regulated the expression of E-cadherin. Hence, DSCR1-1L is an excellent therapeutic target for cancers by regulation of both the endothelial and tumor cells through down-regulating (V)E-cadherin. DSCR1-1L shRNAs have the potential to be developed for clinical application.[Abstract] [Full Text] [Related] [New Search]