These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of vagal innervation on the early development of postoperative ileus in mice.
    Author: Brandlhuber M, Benhaqi P, Brandlhuber B, Koliogiannis V, Kasparek MS, Mueller MH, Kreis ME.
    Journal: Neurogastroenterol Motil; 2022 Feb; 34(2):e14308. PubMed ID: 34962331.
    Abstract:
    BACKGROUND: Postoperative ileus (POI) involves an intestinal inflammatory response that is modulated by afferent and efferent vagal activation. We aimed to identify the potential influence of the vagus nerve on POI by tracking central vagal activation and its role for peripheral inflammatory changes during the early hours after surgery. METHODS: C57BL6 mice were vagotomized (V) 3-4 days prior to experiments, while control animals received sham vagotomy (SV). Subgroups underwent either laparotomy (sham operation; S-POI) or laparotomy followed by standardized small bowel manipulation to induce postoperative ileus (POI). Three hours and 9 h later, respectively, a jejunal segment was harvested and infiltration of inflammatory cells in intestinal muscularis was evaluated by fluorescein isothiocyanate (FITC) avidin and myeloperoxidase (MPO) staining. Moreover, the brain stem was harvested, and central nervous activation was investigated by Fos immunochemistry in both the nucleus of the solitary tract (NTS) and the area postrema (AP). Data are presented as mean ± SEM, and a p < 0.05 was considered statistically significant. KEY RESULTS: Three hour experiments revealed no significant differences between all experimental groups, except MPO staining: 3 h after abdominal surgery, there were significantly more MPO-positive cells in vagotomized S-POI animals compared to sham-vagotomized S-POI animals (26.7 ± 7.1 vs. 5.1 ± 2.4, p < 0.01). Nine hour postoperatively intramuscular mast cells (IMMC) were significantly decreased in the intestinal muscularis of V/POI animals compared to SV/POI animals (1.5 ± 0.3 vs. 5.9 ± 0.2, p < 0.05), while MPO-positive cells were increased in V/POI animals compared to SV/POI animals (713.2 ± 99.4 vs. 46.9 ± 5.8, p < 0.05). There were less Fos-positive cells in the NTS of V/POI animals compared to SV/POI animals (64.7 ± 7.8 vs. 132.8 ± 23.9, p < 0.05) and more Fos-positive cells in the AP of V/POI animals compared to SV/POI animals 9 h postoperatively (38.0 ± 2.0 vs. 13.7 ± 0.9, p < 0.001). CONCLUSIONS AND INTERFERENCES: Afferent nerve signaling to the central nervous system during the development of early POI seems to be mediated mainly via the vagus nerve and to a lesser degree via systemic circulation. During the early hours of POI, the intestinal immune response may be attenuated by vagal modulation, suggesting interactions between the central nervous system and the intestine.
    [Abstract] [Full Text] [Related] [New Search]