These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Model Construction and Research on Decision Support System for Education Management Based on Data Mining. Author: Wang W. Journal: Comput Intell Neurosci; 2021; 2021():9056947. PubMed ID: 34966424. Abstract: Based on data mining technology, this paper applies a combination of theoretical and practical approaches to systematically describe the background and basic concepts related to the generation of data mining-related technologies. The classical data mining process is analyzed in depth and in detail, and the method of building a decision support system for education management based on the B/S model is studied. Not only are the data mining techniques applied to this system, but also the decision tree model with the improved ID3 algorithm is implemented in this thesis, which is further applied to the educational management decision support system of this topic. The load of the client computer is reduced, and the client computer only needs to run a small part of the program. This paper focuses on the following aspects: the overall planning of the educational management decision support system based on data mining technology. From the actual educational management work, we analyze the requirements and design each functional module of this system in detail, applying the system functional structure diagram and functional use case diagram to represent the functional structure of the system and using flow charts to illustrate the workflow of the system as a whole and in parts. The logical structure design, entity-relationship design, and physical model design of the database have been carried out. To improve the efficiency of the system, the ID3 algorithm was improved on this basis to reduce the time complexity of its operation, improve the efficiency of the system operation, and achieve the goal of assessing and predicting the teaching quality of teachers. The development and design of this system provide an efficient, convenient, scientific, and reliable system tool to reduce the workload of education administrators and, more importantly, to make reasonable and effective use of the large amount of data generated in the management, and data mining techniques are used to extract valuable and potential information from these data, which can be more scientific and efficient for the teaching of teachers and students. It can provide reliable, referenceable, and valuable information for managers to make assessments and decisions.[Abstract] [Full Text] [Related] [New Search]