These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-cost Mn-Fe/SAPO-34 catalyst from natural ferromanganese ore and lithium-silicon-powder waste for efficient low-temperature NH3-SCR removal of NOx.
    Author: Pu Y, Yang L, Yao C, Jiang W, Yao L.
    Journal: Chemosphere; 2022 Apr; 293():133465. PubMed ID: 34973259.
    Abstract:
    The development of low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR) catalysts is desirable but still challenging. Herein, a low-cost Mn-Fe/SAPO-34 catalyst was successfully synthesized using natural ferromanganese ore (FO) and industrial waste lithium-silicon-powder (LSP) by solid-state ion exchange (SSIE) method, and showed high NH3-SCR activity at low temperature range (150-200 °C) with high N2 selectivity. After loading FO, Mn-O and Fe-O bonds on Mn-Fe/SAPO-34 were weakened, which were beneficial to electron transfer and the oxidation-reduction cycle of SCR. The coexisting of Mn and Fe promoted the dispersion of Fe, resulted in high amounts of Oa, Mn4+ and Fe3+ which facilitated the adsorption and activization of NH3 over Mn-Fe/SAPO-34 catalyst. The Brønsted and Lewis acid sites participate in NH3-SCR, and the adsorbed nitrate species could quickly react with the adsorbed NH3 species via the Langmuir-Hinshelwood (L-H) mechanism. The Mn-Fe/SAPO-34 integrated the advantages of low-cost, resource saving and environment friendly, giving a low-carbon and sustainable choice for the industrial application of NOx abatement.
    [Abstract] [Full Text] [Related] [New Search]